TY - JOUR
T1 - Role of the chemical modification of titanium dioxide surface on the interaction with silver nanoparticles and the capability to enhance antimicrobial properties of poly(lactic acid) composites
AU - Peña-Juárez, M. G.
AU - Robles-Martínez, M.
AU - Méndez-Rodríguez, K. B.
AU - López-Esparza, R.
AU - Pérez, Elías
AU - Gonzalez-Calderon, J. A.
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/5
Y1 - 2021/5
N2 - In this work, the antimicrobial activity of neat and silanized titanium dioxide deposited with silver nanoparticles was evaluated when it was used as filler in a poly(lactic acid) matrix. The silanization and deposition processes were evaluated by scanning transmission electron microscopy and X-ray photoelectron spectroscopy confirming the chemical modification on the titanium dioxide surface by 3-aminopropyltriethoxy silane and the formation of silver nanoparticles. According to the elemental analysis conducted by energy-dispersive X-ray spectroscopy, more silver, 7.4% higher, was deposited on the oxide when this was previously silanized and when 30% w/w of silver nitrate was used as a precursor. The antimicrobial effect was confirmed for the nanoparticles through the disk diffusion method and for the composites by drop test, against Staphylococcus aureus and Escherichia coli bacteria; the results showed that the inhibition rate increased by 14.2% and 39.1% for nanoparticles and by 57.6% and 38.8% for composites against each bacteria, respectively, when deposition was performed on silanized titanium dioxide. Also, better mechanical properties were obtained in the composites filled with silanized oxide; the best results were obtained in the PLA/sTiO2–Ag 20% system with an improvement of 45.7% in tensile stress and of 38.73% for Young’s modulus. Finally, the toxicity of the composites was evaluated by seeding peripheral blood mononuclear cells; results show evidence that composites filled with these nanoparticles are non-toxic since these do not migrate from the polymeric matrix, which helps to enhance the prolonged surface antibacterial effect and to open a broad perspective of the commercial use of these composites.
AB - In this work, the antimicrobial activity of neat and silanized titanium dioxide deposited with silver nanoparticles was evaluated when it was used as filler in a poly(lactic acid) matrix. The silanization and deposition processes were evaluated by scanning transmission electron microscopy and X-ray photoelectron spectroscopy confirming the chemical modification on the titanium dioxide surface by 3-aminopropyltriethoxy silane and the formation of silver nanoparticles. According to the elemental analysis conducted by energy-dispersive X-ray spectroscopy, more silver, 7.4% higher, was deposited on the oxide when this was previously silanized and when 30% w/w of silver nitrate was used as a precursor. The antimicrobial effect was confirmed for the nanoparticles through the disk diffusion method and for the composites by drop test, against Staphylococcus aureus and Escherichia coli bacteria; the results showed that the inhibition rate increased by 14.2% and 39.1% for nanoparticles and by 57.6% and 38.8% for composites against each bacteria, respectively, when deposition was performed on silanized titanium dioxide. Also, better mechanical properties were obtained in the composites filled with silanized oxide; the best results were obtained in the PLA/sTiO2–Ag 20% system with an improvement of 45.7% in tensile stress and of 38.73% for Young’s modulus. Finally, the toxicity of the composites was evaluated by seeding peripheral blood mononuclear cells; results show evidence that composites filled with these nanoparticles are non-toxic since these do not migrate from the polymeric matrix, which helps to enhance the prolonged surface antibacterial effect and to open a broad perspective of the commercial use of these composites.
KW - Antimicrobial activity
KW - Poly(lactic acid)
KW - Polymer composites
KW - Silver nanoparticles
KW - Titanium dioxide
UR - http://www.scopus.com/inward/record.url?scp=85085746095&partnerID=8YFLogxK
U2 - 10.1007/s00289-020-03235-y
DO - 10.1007/s00289-020-03235-y
M3 - Artículo
SN - 0170-0839
VL - 78
SP - 2765
EP - 2790
JO - Polymer Bulletin
JF - Polymer Bulletin
IS - 5
ER -