Shrimp Shape Analysis by a Chord Length Function Based Methodology

Fernando J. Ramírez-Coronel, Oscar M. Rodríguez-Elías*, Madaín Pérez-Patricio, Edgard Esquer-Miranda, Julio Waissman-Vilanova, Mario I. Chacón-Murguía, Omar Hernández-González

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The most expensive operational cost in shrimp farming and in every aquaculture system is feeding. To estimate the quantity of food is necessary to know the total biomass of the pond. Traditionally, this is done by taking samples and weighting, which is invasive and stress the animals. Non intrusive methods have been tried to estimate pond biomass using different technologies, being one of them computer vision. Computer vision faces several challenges, such as the problem of how to identify shrimps, count them, estimate their size and their mass. In this work, a chord length function based methodology is proposed as a viable alternative to analyze shrimp’s shape and count them, this methodology generates histograms of the shape of the shrimps and therefore, a set of statistical parameters (mean, median, mode, variance, standard deviation, maximun and minimum) to quantify shape and which can be useful to identify shrimps, estimate their sizes, and even find a relationship between morphometric measures with respect to biomass.

Idioma originalInglés
Título de la publicación alojadaRecent Trends in Image Processing and Pattern Recognition - 5th International Conference, RTIP2R 2022, Revised Selected Papers
EditoresKC Santosh, Ayush Goyal, Djamila Aouada, Aaisha Makkar, Yao-Yi Chiang, Satish K Singh
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas205-219
Número de páginas15
ISBN (versión impresa)9783031235986
DOI
EstadoPublicada - 2023
Evento5th International Conference on Recent Trends in Image Processing and Pattern Recognition, RTIP2R 2022 - Kingsville, Estados Unidos
Duración: 1 dic. 20222 dic. 2022

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1704 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia5th International Conference on Recent Trends in Image Processing and Pattern Recognition, RTIP2R 2022
País/TerritorioEstados Unidos
CiudadKingsville
Período1/12/222/12/22

Nota bibliográfica

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'Shrimp Shape Analysis by a Chord Length Function Based Methodology'. En conjunto forman una huella única.

Citar esto