Stability analysis of polynomials with an approach of differential topology

Eleazar López-Flores, Baltazar Aguirre-Hernández*, Martín Eduardo Frías-Armenta

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this paper, we study the Hurwitz stability of polynomials. By considering that a (Formula presented.) degree Hurwitz polynomial has its corresponding Markov parameters, we define the set (Formula presented.) in Section 3, we also define (Formula presented.). Based on properties of the Hankel matrices and the stability test, as well as by using ideas of differential topology, we show that (Formula presented.) is a fiber bundle with a (Formula presented.) base. This result allows us to obtain an interesting application: Given a Hurwitz polynomial, we can generate two families of positive definite Hankel matrices.

Idioma originalInglés
PublicaciónAsian Journal of Control
DOI
EstadoAceptada/en prensa - 2024

Nota bibliográfica

Publisher Copyright:
© 2024 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.

Citar esto