TY - JOUR
T1 - Study of a Polydimethylsiloxane (PDMS) Elastomer Generated by γ Irradiation
T2 - Correlation Between Properties (Thermal and Mechanical) and Structure (Crosslink Density Value)
AU - Meléndez-Zamudio, M.
AU - Villegas, A.
AU - González-Calderón, J. A.
AU - Meléndrez, R.
AU - Meléndez-Lira, M.
AU - Cervantes, J.
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media New York.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - The present study investigates the structural modification of polydimethylsiloxane (PDMS) with a molecular weight of 35 kDa, using varying high doses of gamma irradiation. Elastomeric structures with different crosslinked density values were obtained as a function of the gamma irradiation dose (250, 300, 350 and 400 kGy). The structural characterization of the obtained elastomers was performed by employing Fourier Transform Infrared, 29Si Magic Angle Spinning Nuclear Magnetic Resonance and X-Ray Diffraction (FTIR, 29Si MAS NMR and XRD), showing integration with the polymer chains by siloxane crosslinks (Type-Y) and methylene crosslinks (Type-H). The mechanical and thermal characterizations were carried out by employing dynamical-mechanical analysis (DMA) and modulated differential scanning calorimetry (MDSC). The results showed an important correlation between the thermo-mechanical behavior and the irradiation dose. The thermal stability, analyzed by a thermo-gravimetric analysis (TGA), exhibited interesting behavior that suggested a direct correlation between the decomposition temperature and the structure generated by the gamma irradiation. These results suggest that the obtained elastomers could potentially be considered shape changing materials (SCM).
AB - The present study investigates the structural modification of polydimethylsiloxane (PDMS) with a molecular weight of 35 kDa, using varying high doses of gamma irradiation. Elastomeric structures with different crosslinked density values were obtained as a function of the gamma irradiation dose (250, 300, 350 and 400 kGy). The structural characterization of the obtained elastomers was performed by employing Fourier Transform Infrared, 29Si Magic Angle Spinning Nuclear Magnetic Resonance and X-Ray Diffraction (FTIR, 29Si MAS NMR and XRD), showing integration with the polymer chains by siloxane crosslinks (Type-Y) and methylene crosslinks (Type-H). The mechanical and thermal characterizations were carried out by employing dynamical-mechanical analysis (DMA) and modulated differential scanning calorimetry (MDSC). The results showed an important correlation between the thermo-mechanical behavior and the irradiation dose. The thermal stability, analyzed by a thermo-gravimetric analysis (TGA), exhibited interesting behavior that suggested a direct correlation between the decomposition temperature and the structure generated by the gamma irradiation. These results suggest that the obtained elastomers could potentially be considered shape changing materials (SCM).
KW - Crosslinking density
KW - Elastomer
KW - Gamma radiation
KW - Polydimethylsiloxane
UR - http://www.scopus.com/inward/record.url?scp=85028279574&partnerID=8YFLogxK
U2 - 10.1007/s10904-017-0503-2
DO - 10.1007/s10904-017-0503-2
M3 - Artículo
SN - 1574-1443
VL - 27
SP - 622
EP - 632
JO - Journal of Inorganic and Organometallic Polymers and Materials
JF - Journal of Inorganic and Organometallic Polymers and Materials
IS - 3
ER -