Resumen
Given an m-parameterized family of n-dimensional vector fields, with an equilibrium point with linearization of eigenvalue zero with algebraic multiplicity k, with k ≤ m, and geometric multiplicity one, our goal in this paper is to find sufficient conditions for the family of vector fields such that the dynamics on the k-dimensional m-parameterized center manifold around the equilibrium point becomes locally topologically equivalent to a given unfolding. Finally, the result is applied to the study of the Rössler system.
Idioma original | Inglés |
---|---|
Número de artículo | 1850100 |
Publicación | International Journal of Bifurcation and Chaos |
Volumen | 28 |
N.º | 8 |
DOI | |
Estado | Publicada - 1 jul. 2018 |
Nota bibliográfica
Publisher Copyright:© 2018 World Scientific Publishing Company.