Resumen
On a Poisson foliation equipped with a canonical and cotangential action of a compact Lie group, we describe the averaging method for Poisson connections. In this context, we generalize some previous results on Hannay-Berry connections for Hamiltonian and locally Hamiltonian actions on Poisson fiber bundles. Our main application of the averaging method for connections is the construction of invariant Dirac structures parametrized by the 2-cocycles of the de Rham-Casimir complex of the Poisson foliation.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 343-361 |
Número de páginas | 19 |
Publicación | Journal of Geometric Mechanics |
Volumen | 12 |
N.º | 3 |
DOI | |
Estado | Publicada - 1 sep. 2020 |
Nota bibliográfica
Publisher Copyright:© American Institute of Mathematical Sciences.