The method of non-local transformations: Applications to blow-up problems

A. D. Polyanin, I. K. Shingareva

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

The method for numerical integration of Cauchy problems for ODEs with blow-up solutions is described. It is based on introducing a new non-local variable that reduces a single nth-order ODE to a system of first-order coupled ODEs. This method leads to problems whose solutions are presented in parametric form and do not have blowing-up singular points; therefore the standard fixed-step numerical methods can be applied. The efficiency of the proposed method is illustrated with two test problems. It is shown that the first Painlevé equation with suitable initial conditions have non-monotonic blow-up solutions.

Idioma originalInglés
Número de artículo012042
PublicaciónJournal of Physics: Conference Series
Volumen937
N.º1
DOI
EstadoPublicada - 30 dic. 2017
Evento6th International Conference Problems of Mathematical Physics and Mathematical Modelling, MPMM 2017 - Moscow, Federación de Rusia
Duración: 25 may. 201727 may. 2017

Nota bibliográfica

Publisher Copyright:
© Published under licence by IOP Publishing Ltd.

Huella

Profundice en los temas de investigación de 'The method of non-local transformations: Applications to blow-up problems'. En conjunto forman una huella única.

Citar esto